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Siegel disc singularity spectra 

A H Osbaldestin 
Department of Mathematical Sciences, Loughborough University, Loughbomugh, Leices- 
lenhire E l l  3TU. LK 

Received 4 October 1991, in 6nal form 6 December 1991 

AbslracL W ~UmeriCally determine the generalized dimensions and spectrum of sin- 
gularities of a aitical p i n t  orbit on the boundary of a Siegel disc. The local scaling 
exponent, ~ M N .  and spectrum dependence on the degree, d ,  of the &tical pin1 are 
also mnsidered. We find that Iimd-,  la^^ I d  9 0.523 53 and hence, asymptolically, 
lhe lower limit of the spearum Q mnstant whilst the upper limit is propnional to d .  

1. Introduction 

Recently, Halsey et al [l] have introduced a global description of certain strange sets 
arising in dynamical systems by considering the singularities of measures associated 
with the system (see also 121). They define a 'spectrum of singularities', giving a set of 
possible singularity strengths, a, and corresponding Hausdorff dimensions f ( a ) .  The 
indices OL and the function f( a) generalize previously defined characteristics such as 
local scaling indices and Hausdorff dimension. One of the examples Halsey ef a1 study 
is the critical orbit at the onset of chaos in circle maps with golden mean rotation 
number. They produce a smooth function f ( a ) ,  defined on an interval [amln,amax]. 
The maximum of this function is the Hausdorff dimension of the support of the  
associated measure (1 in this case) and am," and amax are simply related to the 
universal local scaling behaviour in the vicinity of the point of inflexion of the circle 
map as found by Shenker [3]. The universality of this formalism has been supported 
by experimental results on fluid convection and electronic transport phenomena 141. 

The f( a) spectrum has also been studied in other critical quasiperiodic systems. 
I n g  and Kohmoto [5] study the spectrum of a quasiperiodic Schrodinger operator 
and Osbaldestin and Sarkis [6] study KAM tori in area-preserving twist maps. 

Ejti=! mint r--- 
orbit on the boundaly of a Siegel disc. The complex scaling exponent aMN x 
-0,22027 + 0.70848i (laMNI 0.741 932) in the vicinity of the critical point 
has been identified by Manton and Nauenberg [7] for maps of the form f(z) = 
Xr + O( z z ) ,  with X = exp(Z?riy), y = i ( J 5  - l ) ,  the golden mean. Widom [SI has 
also given a renormalization group analysis of this scaling behaviour. As in the circle 
map case of Halsey ef al, we find a smooth function f(a) defined on a theoretically 
predicted range [a,,,, amax]. 

We also investigate the dependence of the singularity spectrum on the degree, 
d, of the critical point, having first presented the degree dependence of the local 
scaling exponent a M N .  Several groups ([%11] amongst others) have considered the 
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degree dependence of the analogous exponent for period doubling cascades. The 
corresponding circle map problem has also been widely studied [12]. Recently Hu 
et al (131 have investigated the degree dependence of the exponents of KAM tori in 
area-preserving twist maps. The degree dependence of the dimensions in the period 
doubling scenario have been considered by Hu and Mao and by Ambika and Joseph 
[14] (see also [lo]). The degree dependence of the dimension associated with the 
mode-locking intervals in circle maps has been explored by Alstr0m and by Delbourgo 

Here we find that aMN - 1 as d + M. Investigation of the form of the approach 
reveals that limd+- laMNld ~ i :  0.523 53. An identical asymptotic form for the period 
doubling scenario has been proved by Eckmann and Wittwer [ll] (see also van der 
Weele er a1 [IO]). For the singularity spectrum this result implies that, asymptotically, 
amin is independent of degree, whilst amax is proportional to d. 

___I V ^ I L _  r.( c1 
UlU WClly LlJJ. 

2. Siegel disc singularity spectrum 

The quadratic complex map 

with A = exp(2s iy) ,  y = :(J5 - l), has a fixed point at z = 1, with linearization 
pure rotation by 2 n y ,  and a critical point, zo, at z = 0. The iterates of the critical 
point, {zo,zl = f (zo) ,z ,  = f ( f ( zo ) ) , .  . .}, lie on a fractal curve (the houndaly of 
the Siegel disc) and it iF their distribution that the singularity spectrum characterizes. 

distance, 1,  of a given orbit member, z i ,  by defining an index ai(Z) through 
spcifia;;y, -we dGcii've ;;e pioba;diQ, p i ,  of oi"uii &;Eag .*iiVK, g ST,&; 

p .  = p l ' ) .  (2.2) 

determined by a!! hdC.X f(*), defined by 
?).pically, ai takes values in a range [ami,, amax], !mown as the singularity spectrum. 

partitioning the fractal into pieces of size 1 and writing the number of times one 
finds index a' in the interval [a, a + da]  as an expression proportional to l - f ( o ) d a .  
f ( a )  is the Hausdorff-dimension of the set of singularities of strengtp a. a,,, 
(respectively amin) is associated with the most rarefied (respectively concentrated) 
regions. ?).pically f(amin) = f(a,,,) = 0. Other types of singularities lie on 
subsets of dimension f ,  with 0 < f < Do, the Hausdorff dimension of the fractal. 

lb calculate the f(a) spectrum, we first calculate a set of generalized dimensions, 
D,, related to a set of dimensions introduced by Renyi 116) (see Hentschel and 
Procaccia [17]). 

We take a truncation of the critical point orbit { z o ,  zl,. . . , zFn] and form the 
lengths l!") = - z i l ,  i = 1 ,2 , .  . . , F, with F, being the nth Fibonacci 

p i  = 1 / F, associated with each length. We form the partition function 

c . p  dc.p!ity of singc!.ritips !$ type n 

scmber. n.,se !engths serve 2s %?t!!n! !e!!gt!! $cz!es fnr 1 p.rtitic!!l e i th  me2s'-"Ps 

(2.3) 
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mimicking the definition of Hausdorff dimension which is the case q = 0. r, = 1 is 
then a simple expression for the function q( T ) ,  from which the generalized dimensions 
D, are defined by 

Do is the Hausdorff dimension, and D, and D, are the information and correlation 
dimensions respectively [17]. 

T = ( q ( T )  - l ) D q .  (2.4) 

Finally, Q and f ( u )  are given from a Legendre transform of D,: 

and 

f('$T)) = 'kr )u(T)  - 7.  (2.6) 
In practice, the solutions to r, = 1 converge slowly with IL and it is better to use 

the equation r , , (q ,r) /r , , - , (q ,~)  = 1 for q ( r ) .  Thus our approximation is 

We refer the reader to [ l ]  for further details of thii formalism. 

Figure 1. D, against q for degree 2 Siegel disa. 

Figure 1 shows the function D, and figure 2 the function !(a) calculated with 
Fn = 6765. We have 

and 

We calculate. the Hausdorff dimension, D,, for the Siegel disc boundaly to be ap- 
proximately 1.030. 
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Pigum 2 f(o) against a for degree 2 Siegel discs 

3. Degree dependence of a- 

Manton and Nauenberg [7! investigated the scaling behaviour of Siegel disc bound- 
aries in complex maps with quadratic critical points. In this section we generalize 
their numerical computations of golden mean scaling exponents to maps with critical 
points of general degree. 

We consider the family of maps 

with 

b = l - ( a + l ) ( X / d )  C =  a + ( a + l ) ( X / d )  

ana a a free reai parameter which we set equai to zero for now. (We wiii iaier mry 
a to check universality.) These maps have the common property (even for a # 0) 
of having a fixed p i n t  at z = 1 with f'( 1) = X and a critical point of degree d at 
z = 0. The degree need not he an integer now and zd = e x p ( d 1 o g z ) .  There are 
no other finite critical points. The map (2.1) studied in section 2 is the degree 2 case 
of (3.1). 

aMN is defined by 

The odd limit is just &,,,where the 'bar' denotes complex conjugate. 
Figfire 3 s h m  how G~~~ varies in tl?e complex plane with d and figure 4 is a 

plot of laMNl against d. The graphs appears smooth and in the limit of large d we 
find behaviour of the form 

lim laMNld ~~0.52353. 
d-m (3.3) 
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Figure 3. D ~ M N  in the complex plane as d varies 

0.6: li 
0 20 40 fill 80 1011 

cl 

0.5 

Figure 4 ~ D L M N ~  against d .  

We shall write this as 
d-m Iim laMNld = e - A  (3.4) 

laMNl - 1 - ( A / d )  as d + w. (3.5) 

with A 2! 0.647 17, which implies 

See figure 5. 
The behaviour as d -+ O+ is interesting in that, as is evident from figure 5, 

aMN approaches a constant with laMNl 2! 0.523. The closeness of this number to 
limd-w laMNld in (3.3) leads one to conjecture that they may indeed be equal. A 
rigorous proof of (3.3) along the lines of that of Eckmann and Withver [ll] may be 
possible and help explain this discovely. 

We witness poor convergence for large d but always estimate A in (3.4) to be close to 
0.65. n e  evidence for the universality of aMN (and hence A) seems strong though. 
R r  each of a = 0, 0.2, 0.5 we calculate laMNl 2! 0.741 932, 0.812 158, 0.9376, 
0.9682, 0.9936 for d = 2, 3, 10, 20, 100 respectively. 

By . . q k g  !he prram%.r n i!! (3.1) we a!! ChPCk !hP u!!iversa!ity af our .xpasen:s. 



Figmre 5. -log(- log ICYMN I) against log d shaving krge and small 
I w N I .  

lviour of 

4. Degree dependence of D, and f ( a )  

It is shaightfonvard to generalize the calculations of section 2 for the map (3.1). 
Equation (2.7) is used to find first of all q ( r )  and thence D, and f ( a ) .  Q u a -  
tion (2.8) is unchanged-except that aMN now depends on d-and equation (2.9) 
becomes 

The asymptotic behaviour of laMN[ (equation (3.4)) immediately leads to 

amin - ( - l o g ~ / A )  G 0.74356 ( 4 4  

and 

Figure 6 shows f ( a )  for d = 2 , 3  . . . , l o .  Already the asymptotic behaviour is visible. 
The results here are similar to those obtained by van der Weele el al [lo] for the 
period doubling problem. We have also attempted to calculate the degree dependence 
of D,. However the convergence of our approximations for large d is very poor and 
we can draw no conclusions other than to say that Do increases monotonically as d 
moves away from 1. 

5. Summary 

We have numerically determined the f(a) spectrum for Siege1 discs with va’ying 
degree critical points. The behaviour of the local scaling exponent aMN is central to 
our results, and, in common with results for period doubling, the quantity JaMNld is 
asymptotically a finite constant. Further investigation of both the limits d - 03 and 
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Figure 6 f(a) against CI for d = 2,3,. . . , 10 

d - O+ by numerical and analytic means is desirable in order to explain the results 
found here. In particular the numerical techniques of van der Weele et al (lo] and 
the analytic methods of Eckmann and Wlttwer [ll] should be brought to bear on the 
Siegel disc probelm. 
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